Densities, Viscosities, Refractive Indices, and Surface Tensions for 12 Flavor Esters from T = 288.15 K to T = 358.15 K

Yaw-Wen Sheu and Chein-Hsiun Tu*

Department of Applied Chemistry, Providence University, Shalu, 43301 Taiwan

Densities, viscosities, refractive indices, and surface tensions for 12 flavor esters were measured from 288.15 K to 358.15 K at atmospheric pressure. The esters studied were ethyl acetoacetate, isoamyl acetate, ethyl isovalerate, methyl benzoate, ethyl caproate, ethyl benzoate, benzyl acetate, isoamyl butyrate, ethyl salicylate, benzyl propionate, ethyl phenylacetate, and ethyl caprylate. Densities were determined using a vibrating-tube density meter, and viscosities were measured with an automatic Ubbelohde capillary viscometer. Refractive indices were measured using a digital Abbe-type refractometer, and surface tensions were measured using the Wilhelmy-plate method. The experimental data were correlated by temperature-dependent equations.

Introduction

The thermophysical study of esters is of increasing interest due to their wide usage in flavoring, perfumery, artificial essences, and cosmetics. Esters are also important solvents in pharmaceutical, paint, and plastic industries. Several studies for binary mixtures of the thermophysical properties of ester compounds have been conducted in the recent years.¹⁻⁶ However, detailed investigation of the properties such as density, viscosity, refractive index, and surface tension over a wide range of temperature for pure flavor esters are still scare in the literature.

Therefore, in the present paper we undertake to obtain reliable density, viscosity, refractive index, and surface tension data for 12 important flavor esters in the temperature range of 288.15 K to 358.15 K at atmospheric pressure. The flavor esters chosen in this study were ethyl acetoacetate, isoamyl acetate, ethyl isovalerate, methyl benzoate, ethyl caproate, ethyl benzoate, benzyl acetate, isoamyl butyrate, ethyl salicylate, benzyl propionate, ethyl phenylacetate, and ethyl caprylate. Among these substances, the density and viscosity data have been reported previously for isoamyl acetate, ethyl isovalerate, and isoamyl butyrate at temperatures from (293.15 to 343.15) K.⁷ To our knowledge, no other data on these properties over a wide range of temperature are available in the open literature.

Experimental Section

Materials. The chemicals used were of analytical grade and were used without further purification. The purity of these chemicals was analyzed by gas chromatography (Perkin-Elmer Autosystem) using a flame ionization detector with a 60 m \times 0.53 mm capillary column packed by Stabilwax. High-purity helium was used as the carrier gas. The mass percent purities as determined by the major peak areas on gas chromatography together with the sources and CAS Registry Nos. (CASRN) of chemicals are given in Table 1.

Apparatus and Procedure. Samples were prepared by mass in a 50 cm³ Erlenmeyer flask provided with a ground

Figure 1. Variation of densities with temperature for six flavor esters: \diamond , ethyl phenylacetate; \Box , benzyl acetate; \triangle , methyl benzoate; \times , ethyl caproate; *, ethyl caproate; \diamond , ethyl isovalerate. Solid curves were calculated from eq 2.

glass joint stopper, using a Precisa 262SMA balance with an uncertainty of \pm 3 \times 10⁻⁵ g. Densities were measured with an Anton Paar DMA-5000 vibrating-tube density meter (Anton-Paar, Graz, Austria) with an accuracy of 5 \times 10⁻⁶ g·cm⁻³ in the range (0 to 3) g·cm⁻³, which was thermostatically controlled to within \pm 0.01 K in the range (273.15 to 363.15) K. Calibration was performed periodically under atmospheric pressure, in accordance with specifications, using double-distilled water and dry air. The uncertainty of the density measurements was estimated to be less than \pm 3 \times 10⁻⁵ g·cm⁻³.

The kinematic viscosities were determined with the commercial Ubbelohde capillary viscometers (Cannon Instrument Co., State College, PA) of (0.36, 0.47, 0.53, and 0.83) mm in diameter. The viscometer was kept in a Lauda D20 KP thermostat controlled to \pm 0.01 K with a proportional-integral-differential regulator. A computer-controlled measuring system (Lauda, Lauda-Königshofen, Germany)

Table 1. Sources and Mass Fraction (w) Purities of the Esters Used in This Study

compounds	molecular formula	sources	CASRN	100w
ethyl acetoacetate	$C_{6}H_{10}O_{3}$	Acros (U.S.A.)	141-97-9	99.2
isoamyl acetate	$C_7H_{14}O_2$	Tedia (U.S.A.)	123-92-2	99.3
ethyl isovalerate	$C_7H_{14}O_2$	Acros (U.S.A.)	108-64-5	99.0
methyl benzoate	$C_8H_8O_2$	Lancaster (England)	93-58-3	99.2
ethyl caproate	$C_8H_{16}O_2$	Acros (U.S.A.)	123-66-0	99.7
ethyl benzoate	$C_9H_{10}O_2$	Acros (U.S.A.)	93-89-0	99.8
benzyl acetate	$C_9H_{10}O_2$	Acros (U.S.A.)	140-11-4	99.6
isoamyl butyrate	$C_9H_{18}O_2$	Acros (U.S.A.)	106-27-4	99.4
ethyl salicylate	$C_9H_{10}O_3$	Acros (U.S.A.)	118-61-6	99.6
benzyl propionate	$C_{10}H_{12}O_2$	TCI (Japan)	122-63-4	99.4
ethyl phenylacetate	$C_{10}H_{12}O_2$	Acros (U.S.A.)	101-97-3	99.4
ethyl caprylate	$C_{10}H_{20}O_2$	Acros (U.S.A.)	106-32-1	99.5

with an uncertainty of \pm 0.01 s was used for flow time measurement. The range of the flow time for the liquids investigated varied from 200 s to 880 s. The kinematic viscosities (ν) were determined according to

$$\nu = k(t - \theta) \tag{1}$$

where k is the viscometer constant, t is the flow time, and θ is the Hagenbach correction. The absolute viscosity (η) was then calculated from the density by the relation $\eta = \nu\rho$. The values of k, which were determined by calibrating with pure water at working temperatures, are 0.000906 \pm 0.000001, 0.002913 \pm 0.000002, 0.004655 \pm 0.000002, and 0.009070 \pm 0.000003 for the capillary viscometers with 0.36 mm, 0.47 mm, 0.53 mm, and 0.83 mm diameter, respectively. The value θ , which is dependent on the flow time and the size of capillary, was taken from the tables supplied by the manufacturer. Triplicate measurements of flow times were reproducible within \pm 0.01 %. The uncertainty of the viscosity measurement was estimated to be less than \pm 0.6 %.

Refractive indices $(n_{\rm D})$ were measured with a digital Abbe refractometer RX-5000 (Atago, Tokyo, Japan), which works at the wavelength (589 nm) corresponding to the D-line of sodium. The temperature was controlled to \pm 0.05 K with circulating thermostat water to a jacketed sample vessel. Calibration was performed periodically under atmospheric pressure using double-distilled water. The uncertainty of the refractive index measurement was estimated to be less than \pm 0.00002 units.

Figure 2. Variation of viscosities with temperature for six flavor esters: \diamond , ethyl phenylacetate; \Box , benzyl acetate; \diamond , methyl benzoate; \times , ethyl caproate; *, ethyl caprylate; \bigcirc , ethyl isovalerate. Solid curves were calculated from eq 3.

Surface tensions (σ) were measured with an automatic surface tension meter model CBVP-A3 (Kyowa, Japan), which works with the Wilhelmy-plate method. The platinum plate was thoroughly cleaned and flame-dried before each measurement. Calibration was performed periodically under atmospheric pressure, in accordance with specifications, using two 200 mg calibration masses. All liquids were thermostatically controlled to within \pm 0.05 K with a circulating thermostat water to a jacketed sample vessel. The uncertainty of surface tension measurement was estimated to be \pm 0.2 mN·m⁻¹.

All measurements described above were performed at least three times under atmospheric pressure (100.8 ± 0.2) kPa, and an average of at least three measurements was calculated for each temperature. The uncertainty in the liquid composition was estimated to be ± 1 × 10⁻⁴.

Results and Discussion

The experimental densities, viscosities, refractive indices, and surface tensions of 12 flavor esters from T = (288.15)to 358.15) K together with the literature values are given in Table 2. From this table, it can be seen that the experimental values are generally in agreement with those from the literature. The deviations between our experimental data and the literature values may have resulted from the differences in the experimental apparatus, procedure, and purities of compounds used.

The experimental densities, refractive indices, and surface tensions of pure esters were correlated using a

Figure 3. Variation of refractive indices with temperature for six flavor esters: \diamond , ethyl phenylacetate; \Box , benzyl acetate; \triangle , methyl benzoate; \times , ethyl caproate; *, ethyl caprylate; \bigcirc , ethyl isovalerate. Solid curves were calculated from eq 2.

Table 2.	Experimental	Densities (ρ) ,	Viscosities $(\eta)_{i}$, Refractive	Indices	$(n_{\rm D})$, and	Surface	Tensions	(σ) for	12 Flavor
Esters a	t Temperatures	s from (288.15	to 358.15) K							

		ρ		η			(τ			ρ		η			σ	
	g•c	m^{-3}	m	Pa•s	n	ι_{D}	mN	m^{-1}		g•c	m^{-3}	m	Pa•s	n	$l_{\rm D}$	mN·m	-1
T/K	exptl	lit	exptl	lit	exptl	lit	exptl	lit	T/K	exptl	lit	exptl	lit	exptl	lit	exptl l	it
							Ethy	l Acet	oacetate								-
288.15	1.03392	1 00000	1.902	1 50010	1.42091	1 (100)	33.3	01.00	328.15	0.99226		0.981		1.40386		29.1	
298.15	1.02345	1.0208^{2} 1.02126^{9}	1.581	1.5081*	1.41658	1.41892	32.3	31.3°	338.15 348 15	0.98158		0.847		1.39949		28.2 27.0	
308.15	1.01300	1.0102^{2}	1.344	1.239^{2}	1.41246	1.4120^{2}	31.1		358.15	0.96046		0.644		1.39061		26.1	
318.15	1.00254		1.144		1.40803		30.0										
000 15	0.05550		0.040		1 40000		Iso	amyl A	Acetate	0.04015	0.007007	0.005	0.0007	1 00005		00.4	
288.15 298.15	0.87772	0.86621^{3}	0.940	0.781^{3}	1.40288		25.4 24.3		318.15	0.84817	0.86732° 0.86014^{7}	0.627	0.638° 0.567^{7}	1.38895 1.38447		22.4 21.6	
200110	0100101	0.876017	0.001	0.827^{7}	100000		- 110		338.15	0.82819	0.85405^{7}	0.484	0.507^{7}	1.37971		20.6	
202 15	0.95907	0.8664^9	0 704	0.7895^9	1 20265		<u>99</u> 4		348.15	0.81807		0.434		1.37487		19.6	
500.15	0.00007	0.85385° 0.87310^{7}	0.704	0.747 0.724^{7}	1.00000		20.4		556.15	0.00705		0.550		1.50555		10.7	
							Eth	vl Isov	alerate								
288.15	0.86966		0.853		1.39880		24.4		328.15	0.82971	0.84235^{7}	0.504	0.516^{7}	1.37978		20.7	
298.15	0.85978	0.864017	0.739	0.752^{7} 0.6597	1.39401		23.5 22.5		338.15	0.81952	0.83631^{7}	0.452	0.457^{7}	1.37492		19.6 18.7	
318.15	0.83981	0.84739^7	0.566	0.581^{7}	1.38458		21.6		358.15	0.79873		0.367		1.36524		17.6	
							Met	hyl Be	enzoate								
288.15	1.09323	1.09262^4	2.297	2.304^{4}	1.51915		38.6	-			1.0739^{10}		1.491^{11}				
298.15	1.08392	1.09334° 1.0850^{1}	1.851	2.298° 1.918^{1}	1.51467	1.51466^{4}	37.2		318.15	1.06462	1.0739^{11} 1.06428^{4}	1.297	1.270^{4}	1.50514	1.5048^{11}	34.8	
200110	1.00001	1.0836^4	1.001	1.823^4	1101101	1.51457^9	0		010.10	1.00101	1.0641^{11}	1.201	1.253^{11}	1.00011	1.0010	0110	
		1.083^5		1.8578 ⁸		1.5152^{11}			328.15	1.05482		1.108		1.50058		33.7	
		1.0839^{10} 1.0837^{11}		1.81011					338.15	1.04499 1.03523		0.970		1.49584		32.5 31.3	
308.15	1.07434	1.0756^{1}	1.531	1.663^{1}	1.50993	1.5101^{11}	35.8		358.15	1.02560		0.750		1.48624		30.4	
		1.07399^{4}		1.504^{4}													
000 1E	0.97564		1 100		1 40050		Etl	nyl Ca	proate	0.02005		0 620		1 20164		00.7	
200.15 298.15	0.87564		0.940		1.40950		26.4 25.4		338.15	0.82855		0.650 0.562		1.39164 1.38705		22.7 21.8	
308.15	0.85691		0.814		1.40055		24.5		348.15	0.81899		0.504		1.38239		21.0	
318.15	0.84750		0.711		1.39597		23.6		358.15	0.80934		0.452		1.37768		20.0	
988 15	1 05078		9 1 1 1		1 50760		Etl	nyl Be	nzoate	1 01940		1 160		1 18016		91.5	
298.15	1.04142	1.041^{5}	1.971	1.945^{8}	1.50328	1.5046^{11}	34.6	34.8^{8}	338.15	1.01340		1.016		1.48340 1.48470		30.2	
000 15	1 00005	1.0421^{11}	1 000	1.936^{11}	1 (0000	1 500111			348.15	0.99470		0.890		1.48004		29.3	
308.15	1.03207 1.02273	1.0325^{11} 1.0229^{11}	1.623	1.591^{11} 1.332^{11}	1.49863	1.5001^{11} 1.4955^{11}	$33.3 \\ 32.5$		358.15	0.98531		0.784		1.47526		28.4	
							Bo	ngul A	actato								
288.15	1.06011		2.530		1.50439		37.7	iizyi A	328.15	1.02267		1.229		1.48623		33.2	
298.15	1.05075	1.0515^9	2.056		1.49982		36.4		338.15	1.01329		1.059		1.48157		32.2	
308.15	1.04139	1.05012	1.703		1,49539		35.3		348.15 358.15	1.00389		0.941		1.47701		31.1 30.1	
318.15	1.03203		1.432		1.49064		34.1		000.10	0.00110		0.020		1.11200		00.1	
							Isoa	myl B	utyrate								
288.15	0.86772	0.0000.47	1.317	0.0057	1.41259		25.7	·	328.15	0.83147	0.842317	0.724	0.6467	1.39506		22.4	
298.15 308.15	0.85869	0.86204° 0.85708^{7}	1.111	0.967° 0.8367	1.40815		24.7 24.0		338.15 348 15	0.82235	0.835454	0.641 0.573	0.5754	1.39055		21.6 20.5	
318.15	0.84055	0.85011^{7}	0.827	0.731^{7}	1.39927		23.1		358.15	0.80396		0.511		1.38139		19.7	
							Eth	nyl Sal	icylate								
288.15	1.13472		3.694		1.52481		37.5		328.15	1.09594		1.530		1.50646		33.4	
298.15	1.12500 1.11529		2.831 2.253		1.52022 1.51573		$36.3 \\ 35.2$		338.15	1.08624		1.305		1.50191		32.0 31.0	
318.15	1.10560		1.842		1.51116		34.4		358.15	1.06683		0.984		1.49296		30.2	
							Benz	zyl Pro	pionate								
288.15	1.03686		2.550		1.49950		36.0	-	328.15	0.99993		1.294		1.48171		31.6	
298.15 308.15	1.02760		2.123		1.49498		34.8 33.6		338.15 348.15	0.99072		1.114		1.47711 1 47252		30.5 29.5	
318.15	1.00915		1.515		1.48611		32.4		358.15	0.97225		0.840		1.46768		28.5	
							Ethvl	Phen	vlacetate	е							
288.15	1.03635		3.002		1.49971		35.9		328.15	0.99893		1.383		1.48149		31.6	
298.15 308.15	1.02696		2.384		1.49513		34.6 33.5		338.15 348 15	0.98961		1.191		1.47688 1 47994		30.6 29⊿	
318.15	1.00826		1.624		1.48583		32.8		358.15	0.97095		0.908		1.46747		28.6	
							Eth	yl Cai	orylate								
288.15	0.87079		1.697		1.41991		27.2		328.15	0.83621		0.892		1.40294		23.8	
298.15 308.15	0.86215 0.85352		1.411		1.41560 1.41137		$\frac{26.4}{25.5}$		338.15 348 15	0.82753		0.784 0.694		1.39857 1.39418		22.8 22.0	
318.15	0.84487		1.027		1.40702		23.0 24.7		358.15	0.81005		0.617		1.38974		21.4	

Table 3. Co	orrelation	Results	from 1	Eq 2	for	Density I	Data
-------------	------------	---------	--------	------	-----	-----------	------

				$\alpha imes 10^{8}$
compounds	a	$b imes 10^4$	$c imes 10^9$	g·cm ⁻³
ethyl acetoacetate isoamyl acetate ethyl isovalerate methyl benzoate ethyl caproate ethyl benzoate benzyl acetate isoamyl butyrate ethyl salicylate benzyl propionate ethyl penylegetate	$\begin{array}{c} 1.3202\\ 1.1297\\ 1.1126\\ 1.3469\\ 1.1239\\ 1.3184\\ 1.3242\\ 1.1155\\ 1.4149\\ 1.3037\\ 1.3101 \end{array}$	$\begin{array}{r} -9.4927\\ -7.7589\\ -7.0697\\ 8.0716\\ -7.9309\\ -9.2367\\ -8.9989\\ -8.1919\\ -9.7525\\ -9.2880\\ -9.6317\end{array}$	$\begin{array}{r} -153.57\\ -342.86\\ -472.62\\ -251.79\\ -237.50\\ -17.262\\ -58.333\\ -141.07\\ 9.5237\\ 9.5238\\ 45.238\end{array}$	7.92.43.2132.01.81.52.13.11.31.3
ethyl caprylate	1.1092	-7.9401	-115.48	8.3

Table 4. Correlation Results from Eq 3 for Viscosity Data

					$\alpha imes 10^4$
compounds	A	$B imes 10^{-3}$	$C imes 10^2$	D	mPa∙s
ethyl acetoacetate	-77.33	3.285	-2.393	12.97	41
isoamyl acetate	-302.2	9.150	-8.579	52.11	66
ethyl isovalerate	-221.6	7.330	-5.769	37.55	18
methyl benzoate	-563.3	17.90	-14.01	95.77	34
ethyl caproate	-322.6	10.28	-8.378	54.95	11
ethyl benzoate	-412.7	13.71	-10.00	69.71	21
benzyl acetate	-151.3	6.368	-3.047	24.53	50
isoamyl butyrate	-257.8	8.633	-6.530	43.60	11
ethyl salicylate	-431.9	15.11	-9.660	72.15	41
benzyl propionate	-69.92	3.125	-2.198	11.71	18
ethyl phenylacetate	-543.8	17.51	-13.42	92.31	13
ethyl caprylate	-309.6	10.28	-7.767	52.41	8.2

 Table 5. Correlation Results from Eq 2 for Refractive Indices

compounds	a	$b imes 10^4$	$c imes 10^8$	$lpha imes 10^5$
ethyl acetoacetate	1.5269	-3.1700	-17.738	7.1
isoamyl acetate	1.5127	-3.1009	-24.643	8.9
ethyl isovalerate	1.5236	-3.9571	-12.976	4.4
methyl benzoate	1.6398	-3.7661	-14.524	7.2
ethyl caproate	1.5207	-3.3179	-18.809	7.9
ethyl benzoate	1.6195	-3.2824	-20.833	8.7
benzyl acetate	1.6279	-4.0523	-8.0952	7.0
isoamyl butyrate	1.5250	-3.4740	-14.940	9.3
ethyl salicylate	1.6626	-4.9559	6.1310	6.7
benzyl propionate	1.5999	-2.6465	-29.107	8.9
ethyl phenylacetate	1.6228	-4.0149	-8.9286	10
ethyl caprylate	1.5295	-3.4139	-13.631	8.3

 Table 6. Correlation Results from Eq 2 for Surface

 Tension Data

				$lpha imes 10^2$
compounds	a	$b imes 10^2$	$c imes10^5$	$\overline{\mathrm{mN}\mathbf{\cdot}\mathrm{m}^{-1}}$
ethyl acetoacetate	73.4	-16.8	10.1	9.4
isoamyl acetate	56.3	-11.8	3.57	6.7
ethyl isovalerate	42.4	-3.51	-9.52	5.1
methyl benzoate	97.3	-27.4	24.4	11
ethyl caproate	57.3	-12.1	4.76	4.7
ethyl benzoate	78.7	-18.5	12.5	13
benzyl acetate	87.5	-22.6	18.4	8.3
isoamyl butyrate	41.9	-3.44	-7.74	11
ethyl salicylate	71.4	-12.8	3.57	16
benzyl propionate	88.0	-24.1	20.8	9.1
ethyl phenylacetate	73.0	-15.0	7.14	15
ethyl caprylate	59.2	-13.1	7.14	10

temperature-dependent equation with the following form:

$$Y = a + b(T/K) + c(T/K)^{2}$$
(2)

where Y refers to ρ /g·cm⁻³, n_D , or σ /mN·m⁻¹; a, b, and c are fitted parameters. The viscosity data of pure esters were regressed using

$$\ln(\eta/mPa \cdot s) = A + \frac{B}{(T/K)} + C(T/K) + D \ln(T/K)$$
 (3)

Figure 4. Variation of surface tensions with temperature for six flavor esters: \diamond , ethyl phenylacetate; \Box , benzyl acetate; \triangle , methyl benzoate; \times , ethyl caproate; *, ethyl caproate; \diamond , ethyl isovalerate. Solid curves were calculated from eq 2.

where *A*, *B*, *C*, and *D* are fitted parameters. The values of fitted parameters were determined by a nonlinear regression analysis based on the least-squares method and are summarized along with the standard deviations (α) between the experimental and fitted values of the respective functions in Tables 3 to 6. The standard deviation is defined by

$$\alpha = \left[\sum_{i=1}^{m} \frac{(Y_i^{\text{exptl}} - Y_i^{\text{calcd}})^2}{m - p}\right]^{1/2}$$
(4)

where *m* is the number of experimental points and *p* is the number of adjustable parameters. The α values lie between 1.3×10^{-5} g·cm⁻³ and 1.3×10^{-4} g·cm⁻³, between 8.2×10^{-4} mPa·s and 6.6×10^{-3} mPa·s, between 4.4×10^{-5} and 1.0×10^{-4} , and between 0.047 mN·m⁻¹ and 0.16mN·m⁻¹ for ρ , η , $n_{\rm D}$, and σ , respectively. The largest α values are corresponding to methyl benzoate, isoamyl acetate, ethyl phenylacetate, and ethyl salicylate for ρ , η , $n_{\rm D}$, and σ , respectively. Figures 1 to 4 show the deviations between the experimental data and the calculated values versus temperature for ρ , η , $n_{\rm D}$, and σ of six flavor esters. It can be seen that eqs 2 and 3 can be used to represent the experimental data very well.

Literature Cited

- Nikam, P. S.; Kharat, S. J. Density and viscosity studies of binary mixtures of N,N-dimethylformamide with toluene and methyl benzoate at (298.15, 303.15, 308.15, and 313.15) K. J. Chem. Eng. Data 2005, 50, 455–459.
- (2) Nayak, J. N.; Aralaguppi, M. I.; Aminabhavi, T. M. Density, viscosity, refractive index, and speed of sound in the binary mixtures of 1,4-dioxane + ethyl acetoacetate, + diethyl oxalate, + diethyl phthalate, or + dioctyl phthalate at 298.15, 303.15, and 308.15 K. J. Chem. Eng. Data 2003, 48, 1489–1494.
- (3) Sastry, N. V.; Patel, M. C. Densities, excess molar volumes, viscosities, speeds of sound, excess isentropic compressibilities, and relative permittivities for alkyl (methyl, ethyl, butyl, and isoamyl) acetates + glycols at different temperatures. J. Chem. Eng. Data 2003, 48, 1019-1027.
- (4) Garcia, B.; Alcalde, R.; Aparicio, S.; Leal, J. M. Thermophysical behavior of methylbenzoate + n-alkanes mixed solvents. Application of cubic equations of state and viscosity models. Ind. Eng. Chem. Res. 2002, 41, 4399-4408.

- (5) Steele, W. V.; Chirico, R. D.; Cowell A. B.; Knipmeyer S. E.; Nguyen, A. Thermodynamic properties and ideal-gas enthalpies of formation for methyl benzoate, ethyl benzoate, (R)-(+)-limonene, tert-amyl methyl ether, trans-crotonaldehyde, and di-
- ethylene glycol. J. Chem. Eng. Data 2002, 47, 667–688.
 (6) Indraswati, N.; Mudjijati; Wicaksana, F.; Hindarso, H.; Ismadji, S. Measurements of density and viscosity of binary mixture of several flavor compounds with 1-butanol and 1-pentanol at 293.15 K, 303.15 K, 313.15 K, and 323.15 K. J. Chem. Eng. Data 2001, 46, 696-702
- (7) Djojoputro H.; Ismadji, S. Density and viscosity correlation for 2005, 50, 727–731. Marcus, Y. *The Properties of Solvents*; John Wiley and Sons: New York, 1998.
- (8)
- Riddick, J. A.; Bunger, W. S.; Sakano, T. Organic Solvents, Physical Properties and Methods of Purification, 4th ed.; John (9) Wiley & Sons: New York, 1986.

- (10) Timmermans, J. Physico-Chemical Constants of Pure Organic Compounds; Elservier, Amsterdam, 1950; Vol I. (11) Aminabhavi, T. M.; Phayde, H. T. S.; Khinnavar, R. S.; Go-
- palkrishna, B.; Hansen, K. C. Densities, refractive indices, speeds of sound and shear viscosities of diethylene glycol dimethyl ether with ethyl acetate, methyl benzoate, ethyl benzoate, and diethyl succinate in the temperature range from 298.15 to 318.15 K. J. Chem. Eng. Data 1994, 39, 251–260.
 (12) Budavari, S.; O'Neil, M. J.; Smith, A.; Heckelman, P. E.; Kinneary, J. J. Strik, A. Heckelman, P. E.; Kinneary, N. J. Strik, A. J. Strik, A. Heckelman, P. E.; Kinneary, N. J. Strik, A. St
- J. F. The Merck Index, 12th ed., Merck & Co., Inc.: Rahway, NJ, 1996.

Received for review May 4, 2005. Accepted June 28, 2005. The authors extend their deep gratitude for the support by the National Science Council of Republic of China under Grant NSC 93-2214-E-126-001.

JE050170X